RegTech Sample Post: AML Monitoring


AI generated.

This sample models a regulated fintech that needs cross‑border AML monitoring, sanctions screening, and auditable case management. The stack balances coverage, explainability, and operational cost. Entity chips surface the key vendors and networks.

Ecosystem: swift, chainalysis, lexisnexis, thomsonreuters, refinitiv, worldcheck.

Key components

  • Sanctions and PEP screening with worldcheck
  • Real‑time transaction monitoring on swift
  • Case management with audit trails and evidence linking
  • Investigator workflows supported by lexisnexis

Metrics

  • 25% fewer false positives after tuning chainalysis
  • Investigation time cut in half using lexisnexis features
  • Broader geographic coverage with refinitiv datasets

Vendor comparison

VendorSanctions & PEPAML analyticsExplainabilityCoverage
worldcheckGlobal
chainalysisCrypto‑heavy
lexisnexisGlobal
refinitivGlobal

Reporting & storage

EntityDashboardsAudit exportsLong‑term storage
powerbi
tableau
PostgreSQLPostgreSQL
snowflake

Operations checklist

  • Weekly list updates from worldcheck
  • Alert triage KPIs tracked in powerbi
  • Audit exports archived in snowflake
  • Model feedback loop summarized in tableau

For reporting: powerbi, tableau. For storage: PostgreSQLPostgreSQL, snowflake.

Sample entity chips: ChainalysisChainalysis, SWIFTSWIFT.